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The vast majority of multi-cellular organisms are anisogamous, meaning that male and female sex cells
differ in size. It remains an open question how this asymmetric state evolved, presumably from the sym-
metric isogamous state where all gametes are roughly the same size (drawn from the same distribution).
Here, we use tools from the study of nonlinear dynamical systems to develop a simple mathematical

model for this phenomenon. Unlike some prior work, we do not assume the existence of mating types.
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lead to anisogamy.

We also model frequency dependent selection via “mean-field coupling,” whereby the likelihood that a
gamete survives is an increasing function of its size relative to the population’s mean gamete size.
Using theoretical analysis and numerical simulation, we demonstrate that this mean-referenced compe-
tition will almost inevitably result in a stable anisogamous equilibrium, and thus isogamy may naturally

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

“Anisogamy” refers to the observation that gamete size distri-
butions in many species are bimodal or multimodal, and has long
been a topic of study (see, e.g., Kalmus, 1932; Kalmus and Smith,
1960; Scudo, 1967; Parker et al., 1972; Bell, 1978; Cox and
Sethian, 1985; Hurst, 1990; Bonsall, 2006; Blute, 2013; Lehtonen
et al., 2016). Anisogamy is common in complex organisms such
as plants, animals, fungi, and certain algae (Parker et al., 1972;
Haig and Westoby, 1988; Billiard et al, 2011; Bateman and
DiMichele, 1994). There is a consensus in the literature that aniso-
gamy evolved from isogamy, where sexual reproduction occurs
between sex cells that are the same size (Parker et al., 1972; Bell,
1978; Bulmer and Parker, 2002; Hayward and Gillooly, 2011).

Anisogamy has been theorized to be a factor in the development
of differences between sexes. Bateman credits to anisogamy the
fact that male Drosophila melanogaster are far more eager than
females to mate (Bateman, 1948). Lehtonen et al. add theory to this
intuition, demonstrating that, as the size ratio between large and
small gametes increases, organisms with small gametes will
choose to allocate more resources to searching for mates and
warding off others with small gametes from potential mates
(Lehtonen et al., 2016).
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A related question that remains of scientific interest is why
most complex organisms have only two sexes. This is the case
for almost all animals, but, e.g., fungi may have scores or even
thousands of “mating types” (the term “sex” is typically not used
in this case) (Kues and Casselton, 1993; Billiard et al., 2011;
Kuees, 2015). We do not directly address this here, but a better
understanding of the origin of anisogamy might also inform our
understanding of this question.

Various attempts have been made to explain the evolution of
anisogamy. Kalmus (1932) and Scudo (1967) argue that the num-
ber of successful fusions is maximized when the difference
between gamete sizes is vast.

Parker et al. (1972) posit that anisogamy developed due to dis-
ruptive selection acting on an isogamous population where gamete
size has an inverse relationship with gamete production and a pos-
itive relationship with zygote viability. The authors argue that this
transition from isogamy to anisogamy depends on how zygote fit-
ness varies with zygote volume. Bell (1978) and Charlesworth
(1978) follow up the work done by Parker et al. by giving an ana-
lytical framework for this theory, further illuminating the relation-
ship between the scaling of fitness with respect to size and the
development of anisogamy.

Bulmer and Parker (2002) expand on this approach by factoring
in explicit survival function for gametes and zygotes. They demon-
strate that shifting the zygote survival function while keeping the
gamete survival function fixed can lead to the development of ani-
sogamy. The authors also adjust their model for the existence and
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stability of an anisogamous evolutionary stable strategy (ESS)
given a critical minimal gamete size.

Our approach differs from most prior work in three key ways.
(1) We do not assume fusions occur only between dissimilar game-
tes (i.e., no mating types), (2) we assume that the viability of a
gamete is not determined by absolute size, but rather by the differ-
ence from the gamete population mean (a form of frequency-
dependence), and (3) we move outside the framework of the ESS
and use dynamical systems theory to find the conditions for
anisogamy.

2. Model development

In this section we begin with a concrete version of our model
using specific algebraic functions; in Section 3.3 we generalize
our analysis to arbitrary functions with some known limiting prop-
erties. We have tried to formulate a model for sexual reproduction
pared down to its most basic elements, captured with very simple
mathematical assumptions. This means a continuous time system
with no mating types,' random encounters among gametes, and
frequency-dependent selection modeled as mean-field coupling.
We believe that it is the relative, rather than absolute, nature of
frequency-dependent selection that is ultimately key to the emer-
gence of anisogamy in this model.

2.1. Individual reproductive potential

Consider a population of N organisms with gametes that have
sizes s;,j = 1,...,N. Following the approach used in Clifton et al.
(2016), we denote the individual “reproductive potential” of the
jth individual by ¢4, defined as some increasing function of the
fitness (the expected number of adult offspring it will produce).”
We assume that this potential can be expressed as a product of N,
the expected number of gametes produced, and ¢,, the average
reproductive potential of its gametes (where gamete reproductive
potential is, similarly, an increasing function of gamete fitness—the
expected number of adults resulting from that gamete, with upper
bound 1, ignoring monozygotic twinning):

¢ind :Ngd)g' (1)

Because we are concerned with anisogamy and hence gamete
size distributions, we ignore all factors influencing reproductive
potential besides gamete size. Other factors are clearly extremely
important, but we model only the effects of gamete sizes on repro-
ductive potential here, and thus write that Ny = Ng(s;), pg = ¢4 (S))-

2.2. Gamete production function

We assume that N is a decreasing function of gamete size due
to the fact that each organism has limited resources (physical, tem-
poral and energetic) to dedicate to gamete production. Some
observational evidence supports this: smaller male sex cells are
far more numerous than significantly larger female sex cells
(Wallace and Kelsey, 2010; Johnson et al.,, 1983; Alberts et al.,
2002; Bellastella et al., 2010); additionally, research has found a
negative relationship between clutch size and egg size in the
black-backed gull Larus fuscus (Nager et al., 2000), and across var-
ious species of snakes (Hedges, 2008).

T We believe that the evolution of mating types need not occur simultaneously
with the emergence of anisogamy, but leave explicit study of that question for future
work.

2 For a brief discussion of the relationship between fitness and reproductive
potential, see Appendix G.
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To present a concrete analytical argument, and motivated by
their ubiquity in nature (Brown et al., 2002; Newman, 2005;
Clauset et al., 2009), we choose N, to be a power law, i.e.,

Ng(sj) = c157* 2)

where c; is a constant of proportionality and the constant o is
assumed to be positive. In Section 3.3, we generalize our argument
to arbitrary decreasing functions.

2.3. Gamete reproductive potential

We assume that ¢, is an increasing function of gamete size. This
is motivated by the idea that increased size indicates increased
provisions to promote survival of the gamete and the zygote poten-
tially formed after fusion with another gamete. Some evidence
supports this link: associations between egg size (measured by vol-
ume or mass) and positive offspring outcomes have been reported
in various avian species (Blomqvist et al., 1997; Krist, 2011;
Erikstad et al., 1998; Valkama et al., 2002).

Critically for our model, we assume that the fitness “payoff”
accruing to larger gametes is relative rather than absolute in nature.
That is, we assume that a gamete of size s; will have greater repro-
ductive potential in a population where it is among the largest than
in a population where it is among the smallest. This assumption (a
form of frequency-dependent selection) is motivated by the hypoth-
esis of zygote competition, and ultimately by the same idea under-
lying natural selection: if environmental conditions preclude all
viable zygotes from reaching adulthood, those with the greater pro-
visions afforded by larger parental gamete sizes will be more likely
to survive. A similar argument can be made if direct competition
between gametes plays a role in determining fitness.

Thus, we link the reproductive potential of the jth gamete to the
full distribution of gamete sizes in the population. We can express
such a link in simple terms by assuming ¢,(s;) is an increasing
function of s; —5, where s = N"'Z} s; is the mean gamete size in
the population.

We expect reproductive potential to saturate for both extremely
large and extremely small gametes, so we choose a sigmoidal form
for our analytical expression of ¢,(s;):

¢g(sj | §) =G (1 +W—ij};s_s|>7 3)

where c; is a constant of proportionality and w sets the width of the
sigmoid. In Section 3.3, we generalize our argument to a wider class
of functions ¢,(s; —3).

Substituting Egs. (2) and (3) into Eq. (1), we obtain the follow-
ing individual reproductive potential function:

bina (Sj | g) =N, (sj)¢g(sj | §) = C35]T°‘ (1 +Wf|;jss|>7 4)

where we have combined the multiplicative constants of propor-
tionality into a single constant c; = ¢;c;.

2.4. Gamete size evolution

We assume that natural selection acts on the population in such
a way that gamete sizes change at a rate proportional to the repro-
ductive potential to be gained. That is, there is a “phenotype flux”

de_la(Pind -
T j=1,...,N. (5)

In the continuum limit N — oo, these N ordinary differential
equations are replaced by a single partial differential equation—
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the continuity equation for p(s, t), the probability density function
describing the distribution of gamete sizes:

% (%) 6)

where ds/dt is given by

ds 1 9¢ig
a7 os @

Here 7 sets the time scale for the evolution of gamete size. Since
this is unknown (and not the focus of this work), we rescale time
such that T = 1 without loss of generality.

To be clear, we are not assuming that individual organisms
explicitly change their gamete sizes in this model, rather, the “phe-
notype flux” ds/dt captures how the gamete size distribution p(s, t)
changes over long time scales. Note that probability density func-
tions such as p(s,t) must obey the continuity equation (Eq. (G.2)).
In Clifton et al. (2016), the authors demonstrated how this
approach (substitution of the phenotype flux from (7) into the con-
tinuity equation) can be considered equivalent to a “replicator
equation” approach (Taylor and Jonker, 1978; Schuster and
Sigmund, 1983) for appropriate choices of fitness functions. We
summarize this connection between the continuity equation and
the replicator equation in Appendix G.

3. Model implications
3.1. Existence of the anisogamous equilibrium

The development of anisogamy through intraspecific competi-
tion can be seen as a form of disruptive selection (da Silva,
2018). This implies a fitness landscape with multiple distinct
peaks. According to Eq. (4), the landscape itself will depend on
the current distribution of gamete sizes through 5 (see Fig. 1),
and we expect that distribution to evolve until all gametes are at
a local peak (in the simple case of identical individuals and no
noise), so this requires us to find a self-consistent solution for
the gamete size distribution.

For ¢;,4 as defined in Eq. (4), at most two local maxima can
exist: one at s; = 0 and another at a nonzero value s*. This is illus-
trated in Fig. 1, where two local maxima can be seen. We therefore
assume that the anisogamous equilibrium may be written in the
form p(s) = x3(s — 0) + (1 — x)5(s — s*),> where ¢ is the Dirac delta
function and 0 <x <1 is the proportion of gametes that are
small (i.e., the proportion that might be referred to as primitive
“male” gametes). This equilibrium must be self-consistent,
meaning that the first moment of the distribution is indeed
the same as the average gamete size 5. Substituting
p(s,t) =x4(s —0) + (1 —x)6(s —s*),§ = (1 —x)s*, Egs. (4), and (7)
into Eq. (6) and solving dp/dt=0 (or, equivalently, setting
Odina/0s = 0 after plugging Eq. (4) into Eq. (7), with 5§ = (1 —X)s*),
we find

Wl —3ox+ /B

S = 4ox? ’ ®)

where f = o«?x?> — 60x + 1. An anisogamous equilibrium thus exists
for all positive o and w, as long as > 0.%

3 This form assumes that a portion x of the population has equilibrium gamete size
near zero, and the rest of the population has size s*, to be determined. See Appendix E
for the case when the small gamete group has finite, nonzero equilibrium gamete size.

4 See Appendix A for discussion of the implications of this requirement.
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o(s;[3)

Ind. reproductive potential (a.u.)

0 5 s*
Gamete size s;

Fig. 1. Example individual reproductive potential function. Here we show the
reproductive potential function defined by Eq. (4) in arbitrary units (a.u.). Two
maxima are apparent, one at zero and another at a nonzero value s*. Dynamics
given by Eq. (5) are illustrated by color with red indicating regions where gamete
size decreases and blue indicating where gamete size increases. For this illustration,
weset w=1/10,0=1,and s = 2.

3.2. Stability of the anisogamous equilibrium

Existence of an anisogamous state does not imply that it is
stable. We only expect stable states to be observable in nature,
so here we examine the stability of the anisogamous equilibrium
described in Section 3.1.

Consider the perturbation of a single individual from the large
gamete group by an amount € < 1 in the limit N >> 1, so this rep-
resents an infinitesimal change to the full gamete distribution. We
set s = (1 —x)s* and Sperc = S* + €, wWhere s* is given by Eq. (8). Sub-
stituting into Eq. (7) and Taylor expanding to linear order in €, we
find

d
d_i =Q(x,0)€, (9)
where
s\ —1—0
Q:_16xoc2(s) (1-x+Vp) (10)

w(1+x0+ v/B)?

with g defined as in Eq. (8). Here Q < O for all allowable parameter
values, and thus the anisogamous state is stable under this kind of
perturbation.

A similar perturbation of one individual from the small gamete
group is simply Sperr = €, which, when substituted into Eq. (7)
yields

de W,
P i L (11)

when truncated at leading order. Since c3, «, w, and s are all positive,
the anisogamous state is stable to infinitesimal perturbations of this
sort whenever it exists.

We omit a more general examination of stability, but in Appen-
dix C.1 we show that all eigenvalues of the finite N system are neg-
ative for N > 1, and thus that the anisogamous state is indeed
linearly stable.

3.3. Geometric argument

For clarity and convenience, we earlier assumed specific alge-
braic forms for ¢, and Ng. We now show the possible emergence
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of anisogamy in a system where only the asymptotic properties of
those functions are known.

We start by expanding the derivative on the right-hand side of
Eq. (7):

ds 1 O 100

dN
= 55 N, +d—sg¢g}. (12)

dt 1t 9s 1T

At an equilibrium s =s*, the net phenotype flux ds/dt=0.
Assuming N > 0 and ¢, > 0, we find that the following condition
must hold at each s*:

qﬁ—é: —N—é (13)
¢ Ne
where ' = 9/0s.

The left side of Eq. (13) is the relative change in gamete repro-
ductive potential and the right side is the magnitude of the relative
change in gamete production. Gamete sizes will increase when the
reproductive potential gains outweigh the decreased gamete pro-
duction, and will shrink when the opposite is true.

The existence of anisogamy requires that two distinct intersec-
tions must exist between the functions on the left and right-hand
sides of Eq. (13) (see Fig. 2). The following conditions are thus suf-
ficient for anisogamy to exist:

1. Continuity of ¢; and Nj.

2. The gamete production terms dominate as size approaches zero
(relative decrease in production larger than relative increase in
reproductive potential), i.e.,

1
_8
Ng

g
g

This is reasonable if the potential saturates at some minimum (pos-

sibly zero) for small gametes.

3. There exists at least one finite value of s (say s =a,a > 0) at
which reproductive potential terms dominate over gamete pro-
duction terms, i.e.,

< ,s—0".

If this fails, smaller gametes are always better for fitness. As long as

there is some “provisioning” advantage to larger gametes at some

point, however, this condition should be satisfied.

4. Gamete production terms again dominate as size goes to infin-
ity, i.e,,

This is reasonable if fitness gains eventually saturate.
In addition to the above, a self-consistency condition must also
hold: It must be possible for the function ¢ /¢, to satisfy

g
g

N
N

given § = (1 — x)s*, for some fractionation x € (0,1).

Fig. 2 shows an example of functional shapes for ¢, and N, that
satisfy these conditions. Note that a wide variety of gamete repro-
ductive potentials ¢, can work—the function need not be sigmoidal
nor even monotonic.
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Gamete size s

Fig. 2. Geometric argument for anisogamy. We illustrate a case where gamete
reproductive potential, ¢,, and gamete production, N, satisfy the conditions set out
in Section 3.3. When gametes are small, the relative gains due to the ability to
produce more of them |N, /Ny | outweigh the relative drop in reproductive potential
\(/)’g/d)g\. In some intermediate range, reproductive potential gains dominate, and
then as gametes become very large the production terms again dominate as
reproductive potential gains saturate.

4. Results and discussion

We have put forth a model that provides a plausible explana-
tion for the development and stability of anisogamy, even without
the existence of mating types. This model is based upon the
assumption that an individual’s overall reproductive potential
can be broken down into a “gamete production” term quantifying
the number of gametes produced, and a “gamete potential” term
quantifying those gametes’ likelihood of eventually forming
zygotes that reach adulthood. Both of these are assumed to depend
upon gamete size, with gamete reproductive potential having a
positive relationship with gamete size, and number of gametes
having a negative relationship with gamete size. A critical assump-
tion is that size-dependence for gamete reproductive potential is
determined relative to the mean of the population, encapsulating
the intra-species competition for resources.

While we believe that a number of situations satisfy our model
assumptions, this model will not be appropriate in certain cases:
e.g., if size does not confer an advantage, if benefits from absolute
gamete size dominate relative effects, or if no effective competition
is present, perhaps because species are rare in the environment.
One way in which our model hypotheses might be tested would
be to ask whether any of these cases apply to extant isogamous
or anisogamous species, subject to the caveat that conditions today
may not be the same as those under which anisogamy initially
arose (see, e.g., Parker et al., 1972).

Although other models have been proposed to explain aniso-
gamy, ours requires minimal assumptions and accounts for its
emergence from an initially isogamous state. We require no
assumptions about the existence of mating types; we hope that
competing theories with and without mating types may in the
future be distinguished based on data. For simplicity and clarity,
we have treated individuals in this work as identical without vari-
ation, and we have allowed small gametes to approach zero size.
More realistic assumptions do not appear to change the broad
results shown here (see Sections Appendices B-F for various
numerical experiments).
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Appendix A. Sex ratios

For the bimodal gamete size distribution to exist, s* must be
real-valued, and hence g = o?x?> — 60x + 1 in Eq. (8) must be posi-
tive. This holds when

X< ﬂj . (A1)
o

Thus there is an implied range of stable sex ratios for a given
value of «. Fig. A.3 illustrates the relationship between the power
law exponent o and the fraction of the population with small
gametes (the fraction “male”) given by Eq. (A.1). As o increases
in magnitude the range of possible fractionations decreases.

Interestingly, an approximate 1:1 sex ratio is not attainable for
some “reasonable” exponents of N, (e.g., 1, 2, and 3, each of which
would correspond to a distinct simple measure of gamete “size”).
This is likely a result of our specific choices of ¢, and N, as well
as the restricted nature of the model. When we modify gamete
reproductive potential to depend on both relative and absolute
gamete size, in numerical simulation we observe stable anisoga-
mous states with arbitrary sex ratios. Also note that our model pur-
posefully omits frequency-dependent selection effects that would
likely drive sex ratios toward 1:1 (the reproductive potential of a
single “male” gamete in a community of mostly “female” gametes
would be much higher than in a community of mostly “male”
gametes because the likelihood of fusion would be higher and
the likelihood of zygote survival would be higher, i.e., Fisher’s prin-
ciple (Hamilton, 1967)).

Appendix B. Numerical simulations

We test predictions of our model via numerical simulation.
Fig. A.4 shows the evolution of a population from a state that is
isogamous to a one that is anisogamous. The gametes (yellow)
move along the landscape (blue) in the direction that increases
their reproductive potential. For this simulation, we set
o =1,N=100, and w = 1/10 with a final fraction of individuals
producing small gametes x = 0.1. The initial isogamous distribu-
tion was sampled from the uniform distribution #/(1, 3).
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Power law exponent «, where (# gametes) o (size)®

Fig. A.3. Possible sex ratios. The solid black curve shows the threshold for
existence of the anisogamous state given by (Eq. (A.1)). The anisogamous
equilibrium exists below the threshold (blue shaded region) and ceases to exist
above the threshold (red shaded region). Here the fraction “male” refers to the
fraction with small gametes.

(a) (®)
= L o/ N L A
2
s © @
k,i:‘,‘:-Z!'_p'«..\vA—;J ® le—/‘~
0 2 40 2 4
Size

Fig. A.4. Simulation of the system. Panels (a)-(d) show the evolution of the system
from an isogamous state to an anisogamous state. Here, the blue curve shows the
reproductive potential landscape given by Eq. (4), the red circles indicate gamete
sizes, and the yellow crosses give positions of gametes along the reproductive
potential landscape. Panel (a) captures the isogamous initial condition ¢/(1, 3). Panel
(b) shows the individuals moving along the landscape in the direction that increases
reproductive potential. Panel (c) shows the beginning of two groups forming. In
Panel (d), the simulation has arrived at an anisogamous equilibrium, with gamete
sizes converging to zero or s* as given by Eq. (8). The final fraction of organisms that
produce small gametes is x=0.1. For this numerical experiment, we set
o=1,N=100, and w = 1/10.

Appendix C. Stability tests
C.1. Linear stability

Section 3.2, we outlined a restricted stability test of the anisog-
amous equilibrium where only single-gamete perturbations were
allowed. A more rigorous test of stability is difficult because the
Dirac delta functions that comprise the equilibrium gamete size
distribution are actually generalized functions and thus must be
treated carefully when perturbed. One straightforward way to
avoid this difficulty is to look at the linear stability of the equilib-
rium for finite N, then take the limit as N — oo.

One can show that, for finite N, the off-diagonal elements of the
Jacobian matrix take the form

]__7(5,-)%71 2N—1Wssgn(si—§> ocw(w+|si_§‘>
SN N (W+|Si—§|)3 (W+\si_§‘>3

It follows that these off-diagonal elements approach zero as
N — oc.

(C1)
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The diagonal elements of the Jacobian matrix take the form

— 2 — —
Ji= s“(w+|15-—s)3 {2<NN 1) [si—S—Sgn(Si—S)

(o)) 202 ()

X(Si*§+W+|5i*§|)] —Zaw(N_]) W+|Si_sl]}- (C2)

N Si

One can show that these are all negative when s; = s* ors; — 0"
and 5 = (1 —x)s* as N — oo, given that Eq. (A.1) is satisfied.

Since off-diagonal elements become infinitesimal, the eigenval-
ues of the Jacobian matrix are determined by the diagonal ele-
ments as N — oo, and thus all eigenvalues are negative, implying
linear stability of the anisogamous equilibrium.

C.2. Stable size distributions

We perform two numerical experiments to test the stability of
the anisogamous state. First, we perturb the large group from its
equilibrium value s* given in Eq. (8) by the amounts
&,i=1,...,(1 =x)N, drawn from N(O, (1/2)2). Fig. C.5a displays
the result of the perturbation. Gamete sizes that were perturbed
return their equilibrium value. Second, we perturb the small group
by amounts &,i = 1,...,xN drawn from 2/(0, 1).” Similar to the first
test, Fig. C.5b demonstrates that the perturbed group returns to its
equilibrium value. We set o =1/3, N=1000, w=2, and x=1/2
in both simulations.

Appendix D. Nonidentical individuals

Our results appear to be robust to the inclusion of natural vari-
ation among the simulated individuals. In various numerical
experiments, we introduced variation in the width of the sigmoidal
gamete reproductive potential function ¢, (see Eq. (3)), as well as
in its mean, minimum, and maximum values. We also varied the
multiplicative factor in the gamete production function (see Eq.
(2)). In all cases, the equilibrium gamete size distribution remained
qualitatively the same as in the case with identical individuals: the
only change was the appearance of some variation around the
expected delta function peaks (primarily the peak at s*) at equilib-
rium. See Fig. D.6.

Appendix E. Nonzero size for small gamete group

Because reproduction requires the transfer of some minimal
amount of physical material, the number of gametes cannot realis-
tically diverge as s — 0. Our results, however, appear to be robust
to the inclusion of a minimal viable gamete size. In simulation, we
incorporated a minimal size by multiplying the individual repro-
ductive potential by e %5, where k > 0. This eliminated the singu-
larity at zero and generated a point 0 <sj ., <s* such that
reproductive potential is maximized. In such simulations, the
resulting equilibrium distribution was
P(S) = x3(S — Snan) + (1 —x)3(s — s*), as expected. See Fig. E.7.

Appendix F. Absolute gamete fitness

In our model we assume that the reproductive potential of a
gamete depends on its size relative to others in the population. In

5 We choose to perturb by the uniform distribution in order to avoid negative
values.
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Fig. C.5. Numerical test of the stability of anisogamy. We test the stability of the
anisogamous state. Panel (a) shows the large gamete group being perturbed and
then returning to its equilibrium value, s*. Panel (b) shows the small gamete group
being perturbed and then returning to its equilibrium value zero. Dotted lines show
large-gamete equilibria from theory. Panels (a) and (b) demonstrate the stability of
the anisogamous equilibrium and are consistent with the asymptotic theory from
Egs. (9) and (11). In both panels, we set o = 1/3,N = 1000, and w = 2, with an
initial fractionation x = 1/2.

Time

Fig. D.6. Simulation with a heterogeneous population. We display the evolution
from isogamy to anisogamy for a heterogeneous population. The large gamete
group widens out when adding noise to the width of the sigmoid in Eq. (3). The final
fraction of organisms that produce small gametes is x = 0.1. For this simulation, we
set o = 1,N = 100, and w was sampled from the distribution ./\/(1/10, 1/502).

15

10+ 1

Size

0 200
Time

Fig. E.7. Simulation with a nonzero minimum gamete size. We display a
simulation where the individual reproductive potential is multiplied by e*/*, where
k > 0. The initial isogamous population moves to an anisogamous population
P(s) = X3(S — Sipan) + (1 =X)5(s —5*),0 < s}, <s*. Here, N=100,w=10=1,
k=1, and the final fraction of small gametes is x = 0.16. The initial isogamous
population was drawn from #/(1, 3).

reality, there are likely some absolute size effects that also play a
role. In Fig. F.8, we numerically simulate our model with the inclu-
sion of both absolute and relative gamete potential terms, with the
results appearing to remain qualitatively unchanged. This shows
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1.5

Gamete size

Time 4

Fig. F.8. Simulation with both absolute and relative reproductive potential. In
this simulation the individual reproductive potential was a weighted sum of two
sigmoidal functions, one as in the Eq. (3) (i.e., centered at ), and the other identical
but centered at c =1. Weight was 90% absolute, 10% relative. The population
converges to an anisogamous state with 40% small gametes. Here,
N=100,w=0.1 +N(O,O4012),oc =1, and the initial population was drawn from
U(0,1.5).

that a wider range of fractionations is now possible at equilibrium;
here the final fraction of small gametes x = 0.4 > (3 — \/f) Jo =
0.17—the threshold given by Eq. (A.1).

Appendix G. Reproductive potential and fitness

Here we briefly summarize the connection between phenotype
flux and fitness that was laid out by Clifton et al. (2016)—the reader
is referred to that reference for greater detail.

Many problems in evolutionary dynamics can be modeled by
the replicator equation (see Taylor and Jonker, 1978; Schuster
and Sigmund, 1983). In the continuum limit, it takes the form

P = pis.0)[fs:0)~F(p)],

where p is the probability distribution of continuous trait s at time
t,f is the fitness of an organism with trait s given the trait distribu-
tion, and f = [ f(s;p)p(s,t) ds. The trait distribution p must
always integrate to one and hence follows the continuity equation
(see Pedlosky, 1987)

ap ds
E*‘V(PE)’

where V = 9/0s here.
The main difference between the replicator equation and the
continuity equation is that temporal changes in the trait distribu-

tion are expressed in terms of an excess fitness f(s; p) — f(p) in
the former, but a phenotype flux ds/dt in the latter. In our model,
we take the phenotype flux as derivable from the individual repro-
ductive potential ¢;,q as expressed in Eq. (7).

Setting the right-hand sides of Egs. (G.1) and (G.2) equal gives

f d ap 9 in 82 in
~plstsip)-Fio)] =V (o) =56 et p2 P

(G.1)

(G.2)

(G3)

(using T =1 for convenience). This expresses one relationship
between fitness and reproductive potential. The relationship can
also be expressed through an integro-differential equation for ¢;,4
in terms of fitness:

6¢in 1 - ; f
Iing _ - /m p(s,0)[f(sp) ~F(p)]ds.

os (©4)
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